A new class of elliptic quasi-variational-hemivariational inequalities for fluid flow with mixed boundary conditions

نویسندگان

چکیده

In this paper we study a class of quasi-variational-hemivariational inequalities in reflexive Banach spaces. The contain convex potential, locally Lipschitz superpotential, and implicit obstacle set constraints. Solution existence compactness the solution to inequality problem are established based on Kakutani–Ky Fan fixed point theorem. applicability results is illustrated by steady-state Oseen model generalized Newtonian incompressible fluid with mixed boundary conditions. latter involve unilateral condition, Navier slip nonmonotone version nonlinear Navier-Fujita generalization threshold leak condition frictional type.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L∞-error Estimates for a Class of Semilinear Elliptic Variational Inequalities and Quasi-variational Inequalities

This paper deals with the finite element approximation of a class of variational inequalities (VI) and quasi-variational inequalities (QVI) with the right-hand side depending upon the solution. We prove that the approximation is optimally accurate in L∞ combining the Banach fixed point theorem with the standard uniform error estimates in linear VIs and QVIs. We also prove that this approach ext...

متن کامل

Well-Posedness for a Class of Strongly Mixed Variational-Hemivariational Inequalities with Perturbations

In this paper, the concept of well-posedness for a minimization problem is extended to develop the concept of well-posedness for a class of strongly mixed variationalhemivariational inequalities with perturbations which includes as a special case the class of variational-hemivariational inequalities with perturbations. We establish some metric characterizations for the well-posed strongly mixed...

متن کامل

Optimal Control Problems for Parabolic Hemivariational Inequalities with Boundary Conditions

In this paper, we study optimal control problems for parabolic hemivariational inequalities of dynamic elasticity and investigate the continuity of the solution mapping from the given initial value and control data to trajectories. We show the existence of an optimal control which minimizes the quadratic cost function and establish the necessary conditions of optimality of an optimal control fo...

متن کامل

Existence and Uniqueness Results for a Nonstandard Variational-Hemivariational Inequalities with Application

‎This paper aims at establishing the existence and uniqueness of solutions for a nonstandard variational-hemivariational inequality. The solutions of this inequality are discussed in a subset $K$ of a reflexive Banach space $X$. Firstly, we prove the existence of solutions in the case of bounded closed and convex subsets. Secondly, we also prove the case when $K$ is compact convex subsets. Fina...

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & mathematics with applications

سال: 2021

ISSN: ['0898-1221', '1873-7668']

DOI: https://doi.org/10.1016/j.camwa.2021.08.022